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Abstract Local and global reactivity descriptors defined
within {N, NS, υ(r)} and {Nα, Nβ, υ(r)} representations pro-
vide a remedy to the problem of inadequacy of hitherto-
known reactivity descriptors in {N, υ(r)} representation in
the analyses of situations where spin multiplicity changes
are present. The tailor-made nature of the spin-dependent
representations for specific processes is highlighted and a
discussion on the convenience to use each representation
is included. The connection between both representations is
presented as a linear transformation. Generalized Fukui func-
tions associated with processes where the number of electrons
and/or the multiplicity change are calculated for closed-shell
(NH3, H2O, HCOOH) and open-shell molecules (CH2) with
BLYP/aug-cc-pVTZ level of theory, using both the finite
differences and the frozen core approximations. Chemical
processes involving spin transfer require the explicitly spin-
dependent reactivity descriptors whose definitions and do-
main of applicability are analyzed. The method of calculation
of these quantities, using finite differences and frozen core
approximations, highlights that these two techniques provide
similar trends, however for cases where orbital relaxation
is important, the finite differences approximation should be
used.

1 Introduction

Chemical reactivity and selectivity have been successfully
described by density functional theory (DFT) [1–5]. In the so-
called {N, υ(r)} representation the chemical system is fully
characterized by the total number of electrons, N , and the
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external potential, υ(r). In this representation the cardinal
reactivity descriptors are electronegativity [3], χ , and hard-
ness [4,5], η. They are defined as the following first [6] and
second [7] derivatives of energy, E, with respect to N , at υ(r)
fixed,

χ = −µ = −
(

∂E

∂N

)
υ(r)

, (1)

and

η =
(

∂2E

∂N2

)
υ(r)

=
(

∂µ

∂N

)
υ(r)

, (2)

where µ is the chemical potential [6]. The global softness, S,
is given by [1]

S = 1

η
, (3)

and the electrophilicity is defined as [8]

ω = µ2

2η
. (4)

Local reactivity descriptors are needed to explain the site
selectivity in a molecule. The most widely used local descrip-
tor is the Fukui function defined as [9]

f (r) =
(

∂ρ(r)
∂N

)
υ(r)

=
(

δµ

δυ(r)

)
N

. (5)

From the discontinuity in the ρ(r) versus N curve, three
different derivatives are usually defined,

f ξ (r) =
(

∂ρ(r)
∂N

)ξ

υ(r)
, (6)

where the superscript ξ = +, − or 0, allows us to have three
different types of Fukui functions, viz. f −(r) for electro-
philic attack, f +(r) for nucleophilic attack and f 0(r) for
radical attack.

A local softness [10], sξ (r), and a local philicity [11],
ωξ(r), have also been proposed to analyze hard–soft and
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electrophile–nucleophile interactions respectively as given
below,

sξ (r) = S f ξ (r), (7)

and

ωξ(r) = ω f ξ (r). (8)

Since sξ (r) and the ωξ(r) are products of one global and one
local reactivity indices they are supposed to explain the inter-
molecular reactivity better than f ξ (r). Condensed-to-atom
variants of these descriptors are also known [2].

All these descriptors have been extensively used [2,12,
13] to understand a multitude of physico-chemical processes
with or without spin multiplicity changes. Since these de-
scriptors are unable to take into account the spin depen-
dence, in the present work we apply global and local reactivity
descriptors in {N, NS, υ(r)} and {Nα, Nβ, υ(r)} representa-
tions within a spin polarized DFT [14–17] to analyze specific
processes where there are multiplicity changes. Addition-
ally, some descriptors are evaluated by using the finite differ-
ences approximation and frozen core approximation, which
are widely used. Thus the pertinence to use of each approxi-
mation is discussed. The theoretical background is provided
in Sect. 2 while Sect. 3 presents the computational details.
Results and discussion are given in Sect. 4. Sect. 5 contains
some concluding remarks and an appendix was included to
present the connections between both representations.

2 Theoretical background

The electron density, ρ(r), and the spin density, ρS(r), are
defined in terms of the spin-α and spin-β populations as,

ρ(r) = ρα(r) + ρβ(r); ρS(r) = ρα(r) − ρβ(r). (9)

In an orbital formulation, like the Kohn-Sham (KS) approach,
these spin densities are written in terms of the corresponding
orbital densities as,

ρσ (r) =
Nσ∑
i=1

∣∣ϕi,σ (r)
∣∣2 =

Nσ∑
i=1

ρi,σ (r); σ = α, β, (10)

which follow the normalization conditions

Nσ =
∫

dr ρσ (r); σ = α, β. (11)

Electron number, N , and spin number, NS, are defined as

N = Nα + Nβ; NS = Nα − Nβ. (12)

2.1 Reactivity descriptors in {N, NS, υ(r)} representation

In this representation the spin potential, µS, and a kind
of chemical potential, µN , are given by [14–16]

µN =
(

∂E

∂N

)
NS,υ(r)

; µS =
(

∂E

∂NS

)
N,υ(r)

. (13)

The corresponding hardness parameters are

ηNN =
(

∂µN

∂N

)
NS,υ(r)

, (14a)

ηNS =
(

∂µN

∂NS

)
N,υ(r)

=
(

∂µS

∂N

)
NS,υ(r)

= ηSN, (14b)

and

ηSS =
(

∂µS

∂NS

)
N,υ(r)

. (14c)

Different Fukui functions are defined in this representation,

fNN (r) =
(

∂ρ(r)
∂N

)
NS,υ(r)

, (15a)

fNS (r) =
(

∂ρ(r)
∂NS

)
N,υ(r)

, (15b)

fSN (r) =
(

∂ρS(r)
∂N

)
NS,υ(r)

, (15c)

and

fSS(r) =
(

∂ρS(r)
∂NS

)
N,υ(r)

. (15d)

From these definitions it is clear that
∫

drfNN(r)=∫ drfSS(r)
= 1 and

∫
drfNS(r) = ∫

drfSN(r) = 0. Directional deriv-
atives of all Fukui functions immediately come from the
N -discontinuity.

Note that the derivatives of µN , equivalent to Eq. 5, are(
δµN

δυ (r)

)
N,NS

=
(

∂ρ(r)
∂N

)
NS,υ(r)

= fNN (r) , (16a)

(
δµS

δυ (r)

)
N,NS

=
(

∂ρ(r)
∂NS

)
N,υ(r)

= fNS (r) . (16b)

By rewriting Eqs. 7 and 8 with the corresponding quantities
from Eqs. 13–16, one can obtain the local softness and philic-
ity variants in this representation. Some of these definitions
have been used in recent years to analyze different chemical
reactions involving changes in spin multiplicity [18–20].

2.2 Reactivity descriptors in {Nα, Nβ, υ(r)} representation

The chemical potentials for the spin up and spin down cases
are written separately as follows [17]

µα =
(

∂E

∂Nα

)
Nβ,υ(r)

; µβ =
(

∂E

∂Nβ

)
Nα,υ(r)

. (17)

Associated hardness indices are

ηαα =
(

∂µα

∂Nα

)
Nβ,υ(r)

, (18a)

ηαβ =
(

∂µα

∂Nβ

)
Nα,υ(r)

=
(

∂µβ

∂Nα

)
Nβ,υ(r)

= ηβα, (18b)
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and

ηββ =
(

∂µβ

∂Nβ

)
Nα,υ(r)

. (18c)

Corresponding Fukui functions similarly come,

fαα(r) =
(

∂ρα(r)
∂Nα

)
Nβ,υ(r)

, (19a)

fββ(r) =
(

∂ρβ(r)
∂Nβ

)
Nα,υ(r)

, (19b)

fαβ(r) =
(

∂ρα(r)
∂Nβ

)
Nα,υ(r)

, (19c)

and

fβα(r) =
(

∂ρβ(r)
∂Nα

)
Nβ,υ(r)

, (19d)

where
∫

drfαα(r) = ∫
drfββ(r) = 1 and

∫
drfαβ (r)

= ∫
drfβα(r) = 0. Note that N -discontinuity leads to direc-

tional derivatives as in Eq. 6.
Derivatives of µα and µβ are related with the previous

quantities,(
δµα

δυ(r)

)
Nα,Nβ

=
(

∂ρ(r)
∂Nα

)
Nβ,υ(r)

= fαα(r) + fβα(r),

(20a)(
δµβ

δυ(r)

)
Nα,Nβ

=
(

∂ρ(r)
∂Nβ

)
Nα,υ(r)

= fαβ(r) + fββ(r).

(20b)

Corresponding local softness and philicity can be defined
easily using above definitions.

At a first glance it appears that the Fukui functions ob-
tained from Eqs. 15 and 19 represent different processes. In
fact this is true although they are connected, as it will be dis-
cussed below. The appendix contains the explicit connections
between both representations.

2.3 Process when the number of electrons is changing

The process involving the determination of electron affinity
is an example of a process where the number of electrons
are changing. Consider the case when one alpha electron is
added to the molecule, Nα = 1 and Nβ = 0.

It is clear that in this case the electron density is modified
since the number of alpha electrons is changing. Thus, at first
order the density changes can be written as

ρ(r) ∼=
{(

∂ρα(r)
∂Nα

)
Nβ,υ(r)

+
(

∂ρβ(r)
∂Nα

)
Nβ,υ(r)

}
Nα,

(21)

or according to definition of Eqs. 19

ρ(r) ∼=
{
f +

αα(r) + f +
βα(r)

}
Nα. (22)

For this process within the {Nα, Nβ, υ(r)} representation two
Fukui functions describe the changes on the electron density.

The changes up to first order in the total energy are ex-
pressed as

E ∼=
(

∂E

∂Nα

)
Nβ,υ(r)

Nα, (23)

or, from Eq. 17,

E ∼= µ+
α Nα. (24)

However, if we work in the {N, NS, υ(r)} representation, the
electron affinity must be divided into several steps. In par-
ticular we can divide it into two processes: (1) Half of the
electron is added to the alpha-electrons set and another half
of the electron to the beta-electrons set, such that NS is kept
constant, N

(1)
S = 0. In this way the change on the electron

density is

ρ(1)(r) ∼=
(

∂ρ(1)(r)
∂N

)
NS,υ(r)

N(1), (25)

with N(1) = N(1)
α + N

(1)
β = 1

2 + 1
2 = 1. (2) Now, the

number of electrons is kept constant, N(2) = 0, and NS
changes in such a way that the fraction of electron previ-
ously added to the beta set is transferred to the alpha one,
N

(2)
S = N(2)

α − N
(2)
β = 1

2 − (− 1
2

) = 1. For this case
the change in the electron density is written as

ρ(2)(r) ∼=
(

∂ρ(2)(r)
∂NS

)
N,υ(r)

N
(2)
S . (26)

The total change in the electron density is given by

ρ(r)=
(
∂ρ(1)(r)

∂N

)
NS,υ(r)

N(1)+
(
∂ρ(2)(r)

∂NS

)
N,υ(r)

N
(2)
S ,

(27)

or, in terms of the generalized Fukui functions (Eq. 15), it is
obtained that

ρ(r) ∼= f
(1)+
NN (r) N(1) + f

(2)+
NS (r) N

(2)
S . (28)

Note that Eqs. 22 and 28 become equal when Eq. 22 is eval-
uated at Nα = 1 and Eq. 28 with N(1) = 1 = N

(2)
S and

the relations from the appendix are taken into account. It is
clear that in both representations at least two Fukui func-
tions are required. Although we use the electron affinity as
example, the same ideas are applicable when an electron is
removed in the ionization process.

For a closed-shell system, the additional electron will
always be placed in an alpha orbital, however, in an open-shell
molecule, a beta orbital could be involved, and the equations
must be changed accordingly,

ρ(r) ∼=
{
f +

αβ(r) + f +
ββ(r)

}
Nβ, (29a)

E ∼= µ+
β Nβ. (29b)

Similar equations are obtained when one electron is removed.
In every case, we will assume that when one electron is added,
it is placed on the lowest unoccupied orbital, while the re-
moved electron comes from the highest occupied one.
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Traditional Fukui function, defined by Eq. 5, can be approx-
imated by f (r) ≈ (

ρ(r)
/
N

)
υ
, where ρ(r) comes from

Eq. 22 or 29a. In this case one has f +(r) ≈ (
Nσ

/
N

)
∑
σ ′

f +
σ ′σ , where σ, σ ′ = α, β. That is, the addition of one elec-

tron with a spin σ induces changes in both spin branches,
one term is associated with the same spin type, f +

σσ , while
the other, f +

σσ ′ , represents the relaxation of the other spin
branch.

2.4 Process when the number of electrons is kept constant

In order to avoid holes in the electron configuration, when the
electrons are moved from one spin set to the other, we only
consider processes between the lowest states of two different
multiplicities. Consider the case when an electron is trans-
ferred from a beta orbital to an alpha one, for this process the
spin number changes,

NS = Nα − Nβ = N0
α + 1 − (N0

β − 1)

= N0
S + 2, NS = 2.

In this case, the {N, NS, υ(r)} representation is more conve-
nient since only one variable is modified. The corresponding
change in the electron density is given by

ρ(r) ∼=
(

∂ρ(r)
∂NS

)
N,υ(r)

NS, (30)

or in terms of the Fukui function,

ρ(r) ∼= f +
NS NS. (31)

In this case the energy change up to first order is given by

E ∼=
(

∂E

∂Ns

)
N,υ(r)

NS, (32)

or in terms of the spin potential,

E ∼= µ+
S NS. (33)

For the same process, in {Nα, Nβ, υ(r)} representation we
need at least two steps: (A) One electron is added to the
alpha electrons set, such that N(A)

α = 1 and N
(A)
β = 0. In

this way

ρ(A)(r) =
{(

∂ρα(r)
∂Nα

)
Nβ,υ(r)

+
(

∂ρβ(r)
∂Nα

)
Nβ,υ(r)

}
N(A)

α .

(34)

(B) One electron is removed from the set of beta electrons,
N

(B)
β = −1, keeping Nα constant, i.e., N(B)

α = 0. For this
trajectory, the electron density change is given by

ρ(B)(r)=
{(

∂ρα(r)
∂Nβ

)
Nα,υ(r)

+
(

∂ρβ(r)
∂Nβ

)
Nα,υ(r)

}
N

(B)
β .

(35)

From Eqs. 34 and 35, we obtain the total change in the elec-
tron density as

ρ(r) ∼= ρ(A)(r) + ρ(B)(r). (36)

In terms of the generalized Fukui functions (Eq. 19), we have

ρ(r) ∼=
{
f +

αα(r) + f +
βα(r)

}
N(A)

α

+
{
f −

αβ(r) + f −
ββ(r)

}
N

(B)
β . (37)

It is evident that the {N, NS, υ(r)} representation is the nat-
ural representation for this process.

For an open-shell system we can increase or decrease
the multiplicity, while in the closed-shell molecules, it only
increases. Also note that the equivalence between Eqs. 31
and 37 directly comes from the relationships obtained in the
appendix.

It is worthy to note that in this case there is not a quan-
tity that is equivalent to the traditional Fukui function, Eq. 5,
since the number of electrons is not changing. For this kind
of process, the new quantities are necessary to characterize
the reactivity.

The main point we want to emphasize here is that there
is one representation where the corresponding Fukui func-
tions can be computed easily, since they only involve one
step. The present analysis provides an important insight: the
best representation to analyze a given process depends on
the particular features of the process. This work shows the
differences in the use of different representations and tries
to give guidelines to choose a suitable representation for the
concerned processes.

3 Computational details

Those Fukui functions appearing in the processes previously
described are calculated for both closed- (NH3, H2O and
HCOOH) and open-shell molecules (CH2 in the triplet state)
using the generalized gradient approximation BLYP [21,22]
with the basis set aug-cc-pVTZ [23,24], and two types of
approximations, viz., the finite differences approximation
and the frozen core approximation. The electronic structure
and the full optimization of the geometries of the systems
considered in this work were obtained with the code
NWChem v4.5 [25].

If it is not possible to use fractional occupancy, there are
two ways to evaluate the Fukui functions. The first one is
related to the finite differences approximation (FDA). For
this case a derivative, for example, ∂F

∂N
is approximated by

∂F

∂N
∼= F Final − F Initial

NFinal − N Initial
(38)

With this approximation, the Fukui functions of Eq. 22, which
were obtained for the case when Nα = 1 and Nβ = 0, are
approximated by

f +
αα(r) ∼= ρAnion

α (r) − ρNeutral
α (r)

N0
α + 1 − N0

α

= ρAnion
α (r) − ρNeutral

α (r), (39)

f +
βα(r) ∼=

ρAnion
β (r) − ρNeutral

β (r)

N0
α + 1 − N0

α

= ρAnion
β (r) − ρNeutral

β (r), (40)
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and the chemical potential µ+
α of Eq. 24 by

µ+
α

∼= EAnion − ENeutral

N0
α + 1 − N0

α

= EAnion − ENeutral. (41)

For this approximation, two calculations are required. In par-
ticular the calculation for anions could be a difficult task.
In order to avoid the problem of obtaining the anion elec-
tronic structure, an additional approximation can be made on
the Fukui function and the chemical potential. This approx-
imation is known as the frozen core approximation (FCA).
Essentially, this approximation does not allow relaxation on
the orbitals when a change in the occupancy occurs, and then
the change in the density corresponds to the orbital density
of the new orbital. As a consequence, the difference of Eq. 39
is approximated by the lowest alpha unoccupied molecular
orbital (LUMO, α) density of the neutral system. In this way
the Fukui function f +

αα(r) is approximated by

f +
αα(r) ∼=

∣∣ϕLUMO,α(r)
∣∣2. (42)

Within this approximation the cross Fukui function f +
βα(r) is

zero, since no relaxation is allowed.
The chemical potential of Eq. 41 in the FCA (a Koop-

mans-like approximation) is approximated by the LUMO
energy

µ+
α

∼= εLUMO,α. (43)

For the open-shell system considered in this work, the trip-
let state of CH2, when an electron is added to the molecule
it is placed on the beta set, then, Nα = 0 and Nβ = 1.
Therefore, two Fukui functions,f +

αβ(r) and f +
ββ(r), must be

computed since alpha and beta densities are not equal, and
within the FDA they are obtained from

f +
αβ(r) ∼= ρAnion

α (r)−ρNeutral
α (r)

N0
β +1−N0

β

= ρAnion
α (r) − ρNeutral

α (r),

(44)

f +
ββ(r) ∼=

ρAnion
β (r)−ρNeutral

β (r)

N0
β +1 − N0

β

=ρAnion
β (r) − ρNeutral

β (r).

(45)

The corresponding chemical potential is

µ+
β

∼= EAnion − ENeutral

N0
β + 1 − N0

β

= EAnion − ENeutral. (46)

Within the FCA, the Fukui function f +
αβ(r) is zero and

f +
ββ(r) ∼=

∣∣ϕLUMO,β(r)
∣∣2. (47)

In this approximation µ+
β is related with the LUMO of the

beta occupation,

µ+
β

∼= εLUMO,β (48)

At this point, it is interesting to compare the Fukui func-
tions and the chemical potential obtained from FDA and from
FCA. Furthermore, it is interesting to see if the f +

βα(r) and
f +

αβ(r) are zero or close to zero with the FDA. In this way

the reliability of the frozen core approximation can be estab-
lished in systems of small size.

Another Fukui function and chemical potential are con-
sidered in this work, namely f −

ββ(r) and µ−
β , which are in-

volved in the ionization process for a closed-shell system,
Nα = 0 and Nβ = −1. With the FDA these quantities
are approximated by

f −
ββ(r) ∼= −[ρCation

β (r) − ρNeutral
β (r)], (49)

and

µ−
β

∼= −[ECation − ENeutral] (50)

or with the FCA by

f −
ββ(r) ∼=

∣∣ϕHOMO,β(r)
∣∣2, (51)

and

µ−
β

∼= εHOMO,β . (52)

The last relation is valid for the exact exchange-correlation
energy functional, which is self-interaction free. However the
previous equation does not hold for many of the approximate
functionals currently used [26].

For the ionization potential, in the open-shell molecule,
one has Nα = −1 and Nβ = 0 and the involved Fukui
function is f −

αα(r). In the FDA one gets

f −
αα(r) ∼= −[ρCation

α (r) − ρNeutral
α (r)], (53)

while in the FCA it can be written as

f −
αα(r) ∼=

∣∣ϕHOMO,α(r)
∣∣2. (54)

For this process the corresponding chemical potential is ob-
tained from

µ−
α

∼= −[ECation − ENeutral] (55)

or

µ−
α

∼= εHOMO,α. (56)

Finally, FDA estimations to the Fukui function f +
NS(r) and

the chemical potential µ+
S , in a closed-shell system (N = 0,

NS = 2), are given by

f +
NS(r) ∼= 1

2

[
ρTriplet(r) − ρSinglet(r)

]
, (57)

and

µ+
S

∼= 1

2

[
ETriplet − ESinglet

]
. (58)

And from the FCA [14–16] by

f +
NS(r) ∼= 1

2

[∣∣ϕLUMO,α(r)
∣∣2 − ∣∣ϕHOMO,β(r)

∣∣2], (59)

and

µ+
S (r) ∼= 1

2

[
εLUMO,α − εHOMO,β

]
(60)

For the open-shell system CH2, the process from the trip-
let to the singlet state was considered, then N = 0 and
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Fig. 1 f +
αα for NH3, H2O and HCOOH and f +

ββ for CH2 obtained with BLYP/aug-cc-pVTZ. The isosurface on the left side of each picture
represents the frozen core approximation (FCA) and the right side is the finite differences approximation (FDA). The isosurfaces for f +

αα were
done at a value of ±0.002 and for f +

ββ at ±0.008. The dark color represents positive values.

NS = −2. In this case, the corresponding Fukui function
can be obtained within the FDA from

f −
NS(r) ∼= 1

2

[
ρTriplet(r) − ρSinglet(r)

]
, (61)

or, using the FCA, it becomes

f −
NS(r) ∼= 1

2

[∣∣ϕHOMO,α(r)
∣∣2 − ∣∣ϕLUMO,β(r)

∣∣2], (62)

where both orbitals come from the triplet state calculation.
The chemical potential for this process is also obtained from
both the approximated schemes. In the FDA it takes the form

µ−
S

∼= 1

2

[
ETriplet − ESinglet

]
, (63)

while from the FCA,

µ−
S

∼= 1

2

[
εHOMO,α − εLUMO,β

]
. (64)

4 Results and discussion

In Fig. 1, the Fukui function obtained from Eqs. 39 and 42 is
depicted for the closed-shell systems NH3, H2O and HCOOH.
Also the Fukui function obtained from Eqs. 45 and 47 for the
CH2 is included.

According to Eqs. 22 and 29a, the increase in the electron
density is commanded by positive values of the Fukui func-
tion. In Fig. 1, the positive values are shown in dark color.
For the closed-shell systems studied in this work, just a small
dark region is present with the FDA, while the LUMO den-
sity (FCA) is located in the same atoms as the FDA, but in

more extended regions, as a consequence of the delocalized
nature of the orbitals from unoccupied shells. Thus, there are
large differences in the spread between FDA and FCA in the
process where one electron is added to these systems, coming
from the relaxation. However, for the open-shell system the
LUMO density is very similar to the Fukui function obtained
with the FDA. This behavior may come from the fact that the
opposite spin partner of the orbital used to describe the Fukui
function in the FCA (LUMO,β), is an occupied one. Estima-
tions of the electron affinity predict a positive value for CH2
and a negative one for the closed-shell systems.1 Precisely
for the CH2 system, the Fukui function f +

ββ(r) is very similar
between FDA and FCA.

Fukui functions f +
βα(r) and f +

αβ(r) obtained by the FDA
are depicted in Fig. 2.

In this figure the nodal isosurface is plotted. In all the
cases studied in this work, the negative region is enclosed into
this isosurface, indicating that this region is more localized
than the positive one. Note that this Fukui function presents
very small values. For example, the H2O exhibits one of the
biggest values for f +

βα(r), with a maximum value of +0.0013
and a minimum value of −0.0140. It suggests that the FCA,
f +

βα(r)=f +
αβ(r)=0, can be thought as a good estimation of this

quantity.
A comparison between Eqs. 49 and 51, for the closed-

shell systems, and between Eqs. 53 and 54, for the open-shell
system, is made in Fig. 3.

1 Electron affinities obtained with BLYP/aug-cc-pVTZ for NH3,
H2O, HCOOH and CH2 are −0.0196, −0.185, −0.0207 and 0.0137
hartrees, respectively
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Fig. 2 f +
βα for NH3, H2O and HCOOH and f +

αβ for CH2 obtained with BLYP/aug-cc-pVTZ, using the FDA. All isosurfaces were done at a value
of 0.0. Regions with a negative value of the Fukui function are located inside the isosurface.

Fig. 3 f −
ββ for NH3, H2O and HCOOH and f −

αα for CH2 obtained with BLYP/aug-cc-pVTZ. The isosurface on the left side of each picture
represents the FCA and the right side is the FDA. All isosurfaces were done at a value of ±0.008. The dark color represents positive values.

From this figure it is clear that the HOMO density gives a
better approximation to the Fukui function f −

ββ(r) or f −
αα(r)

than the LUMO density to the Fukui functions f +
αα(r) and

f +
ββ(r). This is in agreement with the fact that the HOMO

is always more reliable than the LUMO in a self-consistent
field calculation.

The Fukui functions f +
NS(r) and f −

NS(r) calculated from
the FDA (Eqs. 57 and 61) and the FCA (Eqs. 59 and 62) are
presented in Fig. 4.

Without any doubt, the FCA gives similar results to those
obtained with the FDA for the singlet–triplet or triplet–singlet
excitation process, as it is shown in Fig. 4.

The chemical potentials associated with each process are
reported in Table 1. We can see from this table that the FCA
gives different results to those obtained from the FDA. For the
closed-shell systems the estimation of µ+

α presents a differ-
ent sign. We can attribute this behavior to the trend of the KS
orbital energies obtained with the GGA exchange-correlation
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Fig. 4 f +
NS for NH3, H2O and HCOOH and f −

NS for CH2 obtained with BLYP/aug-cc-pVTZ. The isosurface on the left side of each picture
represents the frozen core approximation and the right side is the finite differences approximation. All isosurfaces were done at a value of ±0.008.
The dark color represents positive values.

Table 1 Different chemical potentials estimated by the finite differ-
ence approximation (FDA) and the frozen core approximation (FCA)
for NH3, H2O, HCOOH and CH2.

System µ+
α µ−

β µ+
S

FDA FCA FDA FCA FDA FCA

NH3 0.0196 −0.0312 −0.4006 −0.2242 0.1117 0.0965
H2O 0.0185 −0.0404 −0.4672 −0.2640 0.1281 0.1118
HCOOH 0.0207 −0.0589 −0.4528 −0.2548 0.0953 0.0979

µ+
β µ−

α µ−
S

FDA FCA FDA FCA FDA FCA

CH2 −0.0137 −0.1293 −0.3789 −0.2015 −0.0182 −0.0361

All quantities are in hartrees

functionals. It is known that if the exchange-correlation po-
tential shows a good asymptotic behavior, then the orbital
energies will be deeper. [27–29] Unfortunately this is not
the case for the BLYP functional. Additionally, a physical
meaning has been associated to the HOMO–LUMO gap and
the HOMO energy obtained within KS approach, [30,31] but
there is no physical meaning for the LUMO energy obtained
with this method. Thus this orbital energy cannot be associ-
ated to the electron affinity process. On the other hand, both
approximations, FDA and FCA, yield different values in the
estimation of µ−

β , however both show the same trend, in con-
trast with the calculation of µ+

α and µ+
S , where the LUMO

energy is involved. Clearly the open-shell system exhibits
a different behavior than that presented for the closed-shell
system since the chemical potentials predicted by FDA or
FCA have the same sign.

5 Concluding remarks

Chemical reactivity descriptors like chemical potential, hard-
ness and Fukui function defined in {N, υ(r)} representation
are not suitable tools in the understanding of reactivity and
selectivity trends in some chemical processes that involve
spin polarization effects. To overcome this difficulty, several
local and global reactivity descriptors from the {N, Ns, υ(r)}
and {Nα, Nβ, υ(r)} representations are used. Two processes
are considered to highlight the fact that the best represen-
tation to be used is determined by the features of the pro-
cess under consideration. Spin polarized generalization of
the Fukui functions are calculated for these processes using
two widely used procedures; namely the FDA and FCA.

In general, we found that the FCA gives very similar
results when the involved orbital corresponds to an occu-
pied shell. The use of virtual orbitals in the FCA, especially
when both the alpha and beta are unoccupied, usually leads
to noticeable differences with respect to the FDA. This fact
becomes evident when we compare the local behavior of both
approximations in Fig. 1 with those in Fig. 3.

The importance of spin-dependent global and local reac-
tivity descriptors and two different techniques of their cal-
culations are highlighted. This generalization is necessary in
the understanding of chemical processes like spin catalysis,
mostly involving radicals and electron deficient species like
carbenes. For any process associated with a change in the spin
number, even when the number of electrons and the external
potential remain constant, the conventional {N, v(r)} repre-
sentation becomes inadequate. Two different spin-dependent
representations, viz., {N, NS, v(r)} and

{
Nα, Nβ, v(r)

}
as

well as their interconnections, are discussed and it is shown
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that the choice of the representation depends on the process
under consideration. Both approaches, FDA and FCA, are
approximate techniques. But the former is more reliable be-
cause the latter does not take care of the relaxation effects,
which are more evident in the addition of one electron to a
closed-shell molecule. Relaxation effects can also be impor-
tant in the HOMO density, as it was recently reported. [32]
FDA and FCA provide identical trends for the ionization po-
tential, but, for the electron affinity, the use of the FCA is
not recommended. For processes involving just multiplicity
changes FDA and FCA give close results, but trends are not
the same, mainly because the LUMO orbital energy is in-
volved.

Appendix. Relationship between the reactivity
parameters in {N, NS, υ(r)} and {Nα, Nβ, υ(r)}
representations

Equation (12) defines a linear transformation between the
basic variables of the two representations and it can be writ-
ten in the following form,(

N
NS

)
= P

(
Nα

Nβ

)
=
(

1 1
1 −1

)(
Nα

Nβ

)
. (65)

This transformation is characterized by matrix P whose in-
verse is proportional to itself, P−1 = 1

2 P, then(
Nα

Nβ

)
= P−1

(
N
NS

)
= 1

2

(
1 1
1 −1

)(
N
NS

)
. (66)

Up to second order, the energy change takes the form

dE =
(

µα

µβ

)
·
(

dNα

dNβ

)
+ 1

2

(
dNα

dNβ

)
·
(

ηαα ηαβ

ηβα ηββ

)(
dNα

dNβ

)

=
(

µN

µS

)
·
(

dN
dNS

)
+ 1

2

(
dN
dNS

)
·
(

ηNN ηNS
ηSN ηSS

)(
dN
dNS

)
.

Using the linear transformation and equating the coefficients
one gets the relationship between the generalized chemical
potentials and hardnesses,(

µN

µS

)
= 1

2 P
(

µα

µβ

)
= 1

2

(
µα + µβ

µα − µβ

)
,

(
ηNN ηNS
ηSN ηSS

)
= 1

4 P
(

ηαα ηαβ

ηβα ηββ

)
P

= 1
4

(
ηαα + 2ηαβ + ηββ ηαα − ηαβ

ηαα − ηαβ ηαα − 2ηαβ + ηββ

)
.

The derivatives transform in a similar way,(
∂

∂Nα
∂

∂Nβ

)
=
(

∂N
∂Nα

∂NS
∂Nα

∂N
∂Nβ

∂NS
∂Nβ

)(
∂

∂N
∂

∂NS

)
= PT

(
∂

∂N
∂

∂NS

)
= P

(
∂

∂N
∂

∂NS

)
.

Therefore, the generalized Fukui functions come from the
derivatives of the density and spin density, respectively(

fNN

fNS

)
=
(

∂ρ

∂N
∂ρ

∂NS

)
= 1

2 P

(
∂ρ

∂Nα
∂ρ

∂Nβ

)

= 1
2

(
fαα + fβα + fαβ + fββ

fαα + fβα − fαβ − fββ

)
,

and(
fSN

fSS

)
= 1

2

(
fαα − fβα + fαβ − fββ

fαα − fβα − fαβ + fββ

)
.

Acknowledgements Financial support for R V, A C and M G was pro-
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